#Loading necessary packages library(MASS) library(ggplot2) library(ggrepel) #Loading necessart data Mort_Inf_NATURE_ID50_LD50 <- read.csv("Mort_Inf_NATURE_ID50_LD50.csv") #Creating dataframes for each species New<-split(Mort_Inf_NATURE_ID50_LD50,Mort_Inf_NATURE_ID50_LD50$Species) Y <- lapply(seq_along(New), function(x) as.data.frame(New[[x]])[, 1:10]) Y #Creating New dataframes AMME <- Y[[1]] AMOP <- Y[[2]] ANAE <- Y[[3]] AQCE <- Y[[4]] CHPE <- Y[[5]] CRAL<- Y[[6]] DEOC<- Y[[7]] ENKL<- Y[[8]] ENXA<- Y[[9]] EUBI<- Y[[10]] EULU<- Y[[11]] EUWI<- Y[[12]] HYCH<- Y[[13]] LICH<- Y[[14]] NOME<- Y[[15]] NOPE<- Y[[16]] OSSE<- Y[[17]] PLME<- Y[[18]] PLSH<- Y[[19]] PSRU<- Y[[20]] PSST<- Y[[21]] SCHO<- Y[[22]] SILA<- Y[[23]] TAGR<- Y[[24]] #AMME AMMEprop<-AMME$Infected/(AMME$Total) AMMEprop AMMEtot<-AMME$Total AMMEtot AMMEmodel<-glm(AMMEprop~log(Treatment),family=binomial(link="probit"),data=AMME,weight=AMMEtot) dose.p(AMMEmodel,p=0.5) exp(17.43764) exp(4.868299) ####ID-50 Estimations #AMOP AMOPprop<-AMOP$Infected/(AMOP$Total) AMOPprop AMOPtot<-AMOP$Total AMOPtot AMOPmodel<-glm(AMOPprop~log(Treatment),family=binomial(link="probit"),data=AMOP,weight=AMOPtot) dose.p(AMOPmodel,p=0.5) exp(15.9707) exp(857.8431) #ANAE ANAEprop<-ANAE$Infected/(ANAE$Total) ANAEprop ANAEtot<-ANAE$Total ANAEtot ANAEmodel<-glm(ANAEprop~log(Treatment),family=binomial(link="probit"),data=ANAE,weight=ANAEtot) dose.p(ANAEmodel,p=0.5) exp(9.162012) exp(0.7165214) #AQCE AQCEprop<-AQCE$Infected/(AQCE$Total) AQCEprop AQCEtot<-AQCE$Total AQCEtot AQCEmodel<-glm(AQCEprop~log(Treatment),family=binomial(link="probit"),data=AQCE,weight=AQCEtot) dose.p(AQCEmodel,p=0.5) exp(11.07163) exp(0.6336817) #CHPE CHPEprop<-CHPE$Infected/(CHPE$Total) CHPEprop CHPEtot<-CHPE$Total CHPEtot CHPEmodel<-glm(CHPEprop~log(Treatment),family=binomial(link="probit"),data=CHPE,weight=CHPEtot) dose.p(CHPEmodel,p=0.5) exp(9.707659) exp(1.245197) #CRAL CRALprop<-CRAL$Infected/(CRAL$Total) CRALprop CRALtot<-CRAL$Total CRALtot CRALmodel<-glm(CRALprop~log(Treatment),family=binomial(link="probit"),data=CRAL,weight=CRALtot) dose.p(CRALmodel,p=0.5) exp(-143.6688) #DEOC DEOCprop<-DEOC$Infected/(DEOC$Total) DEOCprop DEOCtot<-DEOC$Total DEOCtot DEOCmodel<-glm(DEOCprop~log(Treatment),family=binomial(link="probit"),data=DEOC,weight=DEOCtot) dose.p(DEOCmodel,p=0.5) exp(16.57926) exp(1.405215) #EUBI EUBIprop<-EUBI$Infected/(EUBI$Total) EUBIprop EUBItot<-EUBI$Total EUBItot EUBImodel<-glm(EUBIprop~log(Treatment),family=binomial(link="probit"),data=EUBI,weight=EUBItot) dose.p(EUBImodel,p=0.5) exp(8.001905) exp(810.0721) #EULU EULUprop<-EULU$Infected/(EULU$Total) EULUprop EULUtot<-EULU$Total EULUtot EULUmodel<-glm(EULUprop~log(Treatment),family=binomial(link="probit"),data=EULU,weight=EULUtot) dose.p(EULUmodel,p=0.5) exp(11.56568) exp( 0.934861) #LICH LICHprop<-LICH$Infected/(LICH$Total) LICHprop LICHtot<-LICH$Total LICHtot LICHmodel<-glm(LICHprop~log(Treatment),family=binomial(link="probit"),data=LICH,weight=LICHtot) dose.p(LICHmodel,p=0.5) exp(15.31872) exp(105.5147) #EUWI EUWIprop<-EUWI$Infected/(EUWI$Total) EUWIprop EUWItot<-EUWI$Total EUWItot EUWImodel<-glm(EUWIprop~log(Treatment),family=binomial(link="probit"),data=EUWI,weight=EUWItot) dose.p(EUWImodel,p=0.5) exp(0.3445269) #HYCH HYCHprop<-HYCH$Infected/(HYCH$Total) HYCHprop HYCHtot<-HYCH$Total HYCHtot HYCHmodel<-glm(HYCHprop~log(Treatment),family=binomial(link="probit"),data=HYCH,weight=HYCHtot) dose.p(HYCHmodel,p=0.5) exp(15.42495) exp(0.1378277) #NOME NOMEprop<-NOME$Infected/(NOME$Total) NOMEprop NOMEtot<-NOME$Total NOMEtot NOMEmodel<-glm(NOMEprop~log(Treatment),family=binomial(link="probit"),data=NOME,weight=NOMEtot) dose.p(NOMEmodel,p=0.5) exp(8.218279) #NOPE NOPEprop<-NOPE$Infected/(NOPE$Total) NOPEprop NOPEtot<-NOPE$Total NOPEtot NOPEmodel<-glm(NOPEprop~log(Treatment),family=binomial(link="probit"),data=NOPE,weight=NOPEtot) dose.p(NOPEmodel,p=0.5) #OSSE OSSEprop<-OSSE$Infected/(OSSE$Total) OSSEprop OSSEtot<-OSSE$Total OSSEtot OSSEmodel<-glm(OSSEprop~log(Treatment),family=binomial(link="probit"),data=OSSE,weight=OSSEtot) dose.p(OSSEmodel,p=0.5) exp(8.73286) #PLME PLMEprop<-PLME$Infected/(PLME$Total) PLMEprop PLMEtot<-PLME$Total PLMEtot PLMEmodel<-glm(PLMEprop~log(Treatment),family=binomial(link="probit"),data=PLME,weight=PLMEtot) dose.p(PLMEmodel,p=0.5) exp(17.7582) exp(2.437811) #PLSH PLSHprop<-PLSH$Infected/(PLSH$Total) PLSHprop PLSHtot<-PLSH$Total PLSHtot PLSHmodel<-glm(PLSHprop~log(Treatment),family=binomial(link="probit"),data=PLSH,weight=PLSHtot) dose.p(PLSHmodel,p=0.5) exp(15.48947) exp(77.52465) #PSRU PSRUprop<-PSRU$Infected/(PSRU$Total) PSRUprop PSRUtot<-PSRU$Total PSRUtot PSRUmodel<-glm(PSRUprop~log(Treatment),family=binomial(link="probit"),data=PSRU,weight=PSRUtot) dose.p(PSRUmodel,p=0.5) exp(9.652154) exp(0.5912302) #PSST PSSTprop<-PSST$Infected/(PSST$Total) PSSTprop PSSTtot<-PSST$Total PSSTtot PSSTmodel<-glm(PSSTprop~log(Treatment),family=binomial(link="probit"),data=PSST,weight=PSSTtot) dose.p(PSSTmodel,p=0.5) exp(13.8674) exp(0.6557128) #SCHO SCHOprop<-SCHO$Infected/(SCHO$Total) SCHOprop SCHOtot<-SCHO$Total SCHOtot SCHOmodel<-glm(SCHOprop~log(Treatment),family=binomial(link="probit"),data=SCHO,weight=SCHOtot) dose.p(SCHOmodel,p=0.5) exp(12.9297) exp(1.039396) #SILA SILAprop<-SILA$Infected/(SILA$Total) SILAprop SILAtot<-SILA$Total SILAtot SILAmodel<-glm(SILAprop~log(Treatment),family=binomial(link="probit"),data=SILA,weight=SILAtot) dose.p(SILAmodel,p=0.5) exp(17.78375) exp(3.564534) #TAGR TAGRprop<-TAGR$Infected/(TAGR$Total) TAGRprop TAGRtot<-TAGR$Total TAGRtot TAGRmodel<-glm(TAGRprop~log(Treatment),family=binomial(link="probit"),data=TAGR,weight=TAGRtot) dose.p(TAGRmodel,p=0.5) exp(8.686874) #ENKL ENKLprop<-ENKL$Infected/(ENKL$Total) ENKLprop ENKLtot<-ENKL$Total ENKLtot ENKLmodel<-glm(ENKLprop~log(Treatment),family=binomial(link="probit"),data=ENKL,weight=ENKLtot) dose.p(ENKLmodel,p=0.5) exp(9.675397) #ENXA ENXAprop<-ENXA$Infected/(ENXA$Total) ENXAprop ENXAtot<-ENXA$Total ENXAtot ENXAmodel<-glm(ENXAprop~log(Treatment),family=binomial(link="probit"),data=ENXA,weight=ENXAtot) dose.p(ENXAmodel,p=0.5) exp( 12.43817) exp( 1.255821) #LD-50 Estimations #ANAE ANAEpropDead<-ANAE$Dead/(ANAE$Total) ANAEpropDead ANAEmodelDead<-glm(ANAEpropDead~log(Treatment),family=binomial(link="probit"),data=ANAE,weight=ANAEtot) dose.p(ANAEmodelDead,p=0.5) exp(14.15861) exp(2.611782) #AQCE AQCEpropDead<-AQCE$Dead/(AQCE$Total) AQCEmodelDead<-glm(AQCEpropDead~log(Treatment),family=binomial(link="probit"),data=AQCE,weight=AQCEtot) dose.p(AQCEmodelDead,p=0.5) exp(11.07163) exp(0.6336817) # CHPEpropDead<-CHPE$Dead/(CHPE$Total) CHPEmodelDead<-glm(CHPEpropDead~log(Treatment),family=binomial(link="probit"),data=CHPE,weight=CHPEtot) dose.p(CHPEmodelDead,p=0.5) exp(11.53898) exp(0.6258333) #EUBI EUBIpropDead<-EUBI$Dead/(EUBI$Total) EUBImodelDead<-glm(EUBIpropDead~log(Treatment),family=binomial(link="probit"),data=EUBI,weight=EUBItot) dose.p(EUBImodelDead,p=0.5) exp(14.86623) exp(1.099715) #EUWI EUWIpropDead<-EUWI$Dead/(EUWI$Total) EUWImodelDead<-glm(EUWIpropDead~log(Treatment),family=binomial(link="probit"),data=EUWI,weight=EUWItot) dose.p(EUWImodelDead,p=0.5) exp(14.91199) exp(0.3357429) #NOME NOMEpropDead<-NOME$Dead/(NOME$Total) NOMEmodelDead<-glm(NOMEpropDead~log(Treatment),family=binomial(link="probit"),data=NOME,weight=NOMEtot) dose.p(NOMEmodelDead,p=0.5) exp(9.921735) exp( 0.4014456) #NOPE NOPEpropDead<-NOPE$Dead/(NOPE$Total) NOPEpropDead NOPEmodelDead<-glm(NOPEpropDead~log(Treatment),family=binomial(link="probit"),data=NOPE,weight=NOPEtot) dose.p(NOPEmodelDead,p=0.5) exp(11.18118) exp(0.6144835) #OSSE OSSEpropDead<-OSSE$Dead/(OSSE$Total) OSSEmodelDead<-glm(OSSEpropDead~log(Treatment),family=binomial(link="probit"),data=OSSE,weight=OSSEtot) dose.p(OSSEmodelDead,p=0.5) exp(12.90576) #PSRU PSRUpropDead<-PSRU$Dead/(PSRU$Total) PSRUmodelDead<-glm(PSRUpropDead~log(Treatment),family=binomial(link="probit"),data=PSRU,weight=PSRUtot) dose.p(PSRUmodelDead,p=0.5) exp(14.26702) #SCHO SCHOpropDead<-SCHO$Dead/(SCHO$Total) SCHOmodelDead<-glm(SCHOpropDead~log(Treatment),family=binomial(link="probit"),data=SCHO,weight=SCHOtot) dose.p(SCHOmodelDead,p=0.5) exp(15.7704) #TAGR TAGRpropDead<-TAGR$Dead/(TAGR$Total) TAGRmodelDead<-glm(TAGRpropDead~log(Treatment),family=binomial(link="probit"),data=TAGR,weight=TAGRtot) dose.p(TAGRmodelDead,p=0.5) exp(15.39697) exp(0.6518898) #ENKL ENKLpropDead<-ENKL$Dead/(ENKL$Total) ENKLmodelDead<-glm(ENKLpropDead~log(Treatment),family=binomial(link="probit"),data=ENKL,weight=ENKLtot) dose.p(ENKLmodelDead,p=0.5) exp(13.789) exp(0.7984993) #ENXA ENXApropDead<-ENXA$Dead/(ENXA$Total) ENXAmodelDead<-glm(ENXApropDead~log(Treatment),family=binomial(link="probit"),data=ENXA,weight=ENXAtot) dose.p(ENXAmodelDead,p=0.5) exp(15.58563) #NOVI NOVIdata = data.frame(Treatment = c(5000000,500000,50000,5000), alive = c(0,0,0,.1), dead = c(1,1,1,.9),NOVItot=c(10,10,10,10)) NOVImodelDead<-glm(dead~log(Treatment),family=binomial(link="probit"),data=NOVIdata,weight=NOVItot) dose.p(NOVImodelDead) exp(7.97144) #Creating ID50/LD50 Ordination Figure 3 ID50_LD50_Ordination_Data.csv <- read.csv("ID50_LD50_Ordination_Data.csv", row.names=1) ID50_LD50_Ordination_Data.csv #Figure3 OrdinationPlot<-ggplot(ID50_LD50_Ordination_Data.csv, aes(x=log(ID50), y=log(LD50),color=ConservationRisk,fill=ConservationRisk,size=Amplification_Potential))+ geom_label_repel(label=rownames(ID50_LD50_Ordination_Data.csv), nudge_x = 0.25, nudge_y = -0.25,color="black",fill="white",size=3.5)+ geom_hline(yintercept=16.25,color="black",size=1,lty=2)+ scale_x_continuous(expand=c(0.01,0.01)) + scale_y_continuous(expand=c(0.01,0.01))+ theme(axis.line.x=element_line(), axis.line.y=element_line())+geom_point(pch=21)+scale_size_continuous(range=c(2,8))+ coord_cartesian(xlim=c(7.5,20),ylim=c(7.5,17.5))+ scale_color_manual(values=c("black","black","black","black"))+ scale_fill_manual(values=c("darkorange2","skyblue2","yellow2","firebrick4"))+ theme(legend.position="none",axis.title.x = element_blank(),axis.title.y=element_blank(), axis.text.x=element_text(face="bold",color="black"), axis.text.y=element_text(face="bold",color="black")) OrdinationPlot