library(ggplot2)
library(gridExtra)
library(bbmle)
library(emdbook)
library(dplyr)
library(tidyr)
library(tidyverse)
library(tibble)
library(knitr)
library(rmarkdown)
library(kableExtra)
library(stringr)
library(grid)
library(ggpubr)
library(dunn.test)
library(lawstat)
theme_mitch <- theme(panel.background=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.border=element_blank(), axis.line=element_line(color="black", size=1), text = element_text(colour = "black", size = 18),axis.text.x = element_text(color = "black", margin=unit(c(0,0.2,0.2,0.2), "cm")), axis.text.y = element_text(color = "black", margin=unit(c(0.2,0,0.2,0.2), "cm")), plot.title = element_text(hjust =))
AL <- read.csv(file.choose()) # choose "NOVISSData.csv" file that is provided
# TP Control Only Setup ####
TPCtlmaster <- filter(AL, Trtmt =="Control", Secretion=="Total Protein", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy")
# TP uggbw Control only####
TPTemp <- group_by(TPCtlmaster, Temp)
TPTempuggbw <- filter(TPTemp, !is.na(uggbw))
## summarize####
TPTempuggbwsum <- summarise(TPTempuggbw, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n()))
F6aSum <- TPTempuggbwsum
F6aSum
## # A tibble: 3 x 5
## Temp count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 06°C 10 165. 163. 51.5
## 2 14°C 10 95.5 68.9 21.8
## 3 22°C 7 53.5 49.2 18.6
## plot means####
Fig6a <- ggplot(TPTempuggbwsum, aes(Temp, avg, fill=Temp)) +
geom_col() +
scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) +
theme(legend.position="none") +
xlab("Temperature(°C)") +
ylab("Protein Recovered(µg/gbw)") +
theme_mitch +
scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) +
geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9))+
scale_y_continuous(expand=c(0,0), limits=c(0,240))
Fig6a
## stats####
### test assumptions
levene.test(TPTempuggbw$uggbw, TPTempuggbw$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TPTempuggbw$uggbw
## Test Statistic = 1.0969, p-value = 0.3501
shapiro.test(TPTempuggbw$uggbw)
##
## Shapiro-Wilk normality test
##
## data: TPTempuggbw$uggbw
## W = 0.70808, p-value = 5.032e-06
### transform data
TPTempuggbw$uggbw_log <- log10(TPTempuggbw$uggbw)
### test assumptions
levene.test(TPTempuggbw$uggbw_log, TPTempuggbw$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TPTempuggbw$uggbw_log
## Test Statistic = 0.40428, p-value = 0.6719
shapiro.test(TPTempuggbw$uggbw_log)
##
## Shapiro-Wilk normality test
##
## data: TPTempuggbw$uggbw_log
## W = 0.97745, p-value = 0.8008
### analyze data
TPTempuggbwanovalog <- aov(uggbw_log ~ Temp, data=TPTempuggbw)
F6aStats <- summary(TPTempuggbwanovalog)
F6aStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Temp 2 1.054 0.5272 4.078 0.0299 *
## Residuals 24 3.103 0.1293
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F6aPostHoc <- TukeyHSD(TPTempuggbwanovalog)
F6aPostHoc
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = uggbw_log ~ Temp, data = TPTempuggbw)
##
## $Temp
## diff lwr upr p adj
## 14°C-06°C -0.1777813 -0.5793536 0.22379092 0.5199666
## 22°C-06°C -0.5046606 -0.9471717 -0.06214954 0.0232693
## 22°C-14°C -0.3268793 -0.7693904 0.11563181 0.1768010
# TP % inhib Control only####
TPTempinhib <- filter(TPTemp, CellGloConc=="500", !is.na(CellGloPctInhib))
## summarize####
TPTempinhibsum <- summarise(TPTempinhib, count=n(), avg=mean(CellGloPctInhib), standarddev=sd(CellGloPctInhib), sem=sd(CellGloPctInhib)/sqrt(n()))
F6bSum <- TPTempinhibsum
F6bSum
## # A tibble: 3 x 5
## Temp count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 06°C 10 35.6 19.6 6.18
## 2 14°C 9 32.2 32.4 10.8
## 3 22°C 5 34.2 30.5 13.6
## plot means ####
Fig6b <- ggplot(TPTempinhibsum, aes(Temp, avg, fill=Temp)) +
geom_col() +
scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) +
theme(legend.position="none") +
xlab("Temperature(°C)") +
ylab("Percent Inhibition") +
theme_mitch +
scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) +
geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9))+
scale_y_continuous(expand=c(0,0), limits=c(0,100))
Fig6b
## stats####
### test assumptions
levene.test(TPTempinhib$CellGloPctInhib, TPTempinhib$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TPTempinhib$CellGloPctInhib
## Test Statistic = 0.66147, p-value = 0.5265
shapiro.test(TPTempinhib$CellGloPctInhib)
##
## Shapiro-Wilk normality test
##
## data: TPTempinhib$CellGloPctInhib
## W = 0.94856, p-value = 0.2521
### analyze data
TPTempinhibanova <- aov(CellGloPctInhib ~ Temp, data=TPTempinhib)
F6bStats <- summary(TPTempinhibanova)
F6bStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Temp 2 56 27.8 0.038 0.963
## Residuals 21 15533 739.7
# TP Effectiveness Control only####
TPTempeffctl <- filter(TPTemp, CellGloConc=="500", !is.na(uggbw), !is.na(CellGloPctInhib))
TPTempeffctl$Eff <- TPTempeffctl$uggbw*TPTempeffctl$CellGloPctInhib
## summarize####
TPTempeffsumctl <- summarise(TPTempeffctl, count=n(), avg=mean(Eff), standarddev=sd(Eff), sem=sd(Eff)/sqrt(n()))
F6cSum <- TPTempeffsumctl
F6cSum
## # A tibble: 3 x 5
## Temp count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 06°C 10 7513. 9864. 3119.
## 2 14°C 9 1801. 1790. 597.
## 3 22°C 5 1293. 892. 399.
### plot means####
Fig6c <- ggplot(TPTempeffsumctl, aes(Temp, avg, fill=Temp)) +
geom_col() +
scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) +
theme(legend.position="none") +
xlab("Temperature(°C)") +
ylab("Protein Effectiveness") +
theme_mitch +
scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) +
geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9))+
scale_y_continuous(expand=c(0,0), limits=c(0,12000))
Fig6c
## stats####
### test assumptions
levene.test(TPTempeffctl$Eff, TPTempeffctl$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TPTempeffctl$Eff
## Test Statistic = 1.8194, p-value = 0.1868
shapiro.test(TPTempeffctl$Eff)
##
## Shapiro-Wilk normality test
##
## data: TPTempeffctl$Eff
## W = 0.54288, p-value = 1.511e-07
### transform data
TPTempeffctl$log_Eff <- log10(TPTempeffctl$Eff + 1)
### test assumptions
levene.test(TPTempeffctl$log_Eff, TPTempeffctl$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TPTempeffctl$log_Eff
## Test Statistic = 0.46005, p-value = 0.6375
shapiro.test(TPTempeffctl$log_Eff)
##
## Shapiro-Wilk normality test
##
## data: TPTempeffctl$log_Eff
## W = 0.7316, p-value = 2.714e-05
### analyze data
F6cStats <- kruskal.test(Eff ~ Temp, data=TPTempeffctl)
F6cStats
##
## Kruskal-Wallis rank sum test
##
## data: Eff by Temp
## Kruskal-Wallis chi-squared = 4.5657, df = 2, p-value = 0.102
# TP 6C Only uggbw####
TPAllmaster <- filter(AL, Secretion=="Total Protein", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy")
# TP uggbw All Newts####
TPTempAll <- group_by(TPAllmaster, Temp)
TP6C <- filter(TPTempAll, Temp=="06°C", !is.na(uggbw))
TP6C <- group_by(TP6C, Trtmt)
## summarize####
TP6Csum <- summarize(TP6C, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n()))
F7aSum <- TP6Csum
F7aSum
## # A tibble: 3 x 5
## Trtmt count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 5*10^3 9 208. 134. 44.8
## 2 5*10^4 6 131. 67.0 27.4
## 3 Control 10 165. 163. 51.5
## plot means####
Fig7a <- ggplot(TP6Csum, aes(Trtmt, avg, fill=Trtmt)) +
geom_col() +
theme(legend.position="none") +
scale_fill_manual(values=c("#B74641", "#730202", "#FB8383")) +
xlab("Exposure Treatment(zsp)") +
ylab("Recovered Proteins(µg/gbw)") +
theme_mitch +
geom_errorbar(aes(x=Trtmt, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) +
scale_x_discrete(limits=c("Control", "5*10^3", "5*10^4"), labels=c("Control", "5,000", "50,000")) +
scale_y_continuous(expand=c(0,0), limits=c(0,300))
Fig7a
## stats####
### test assumptions
levene.test(TP6C$uggbw, TP6C$Trtmt)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TP6C$uggbw
## Test Statistic = 0.4774, p-value = 0.6267
shapiro.test(TP6C$uggbw)
##
## Shapiro-Wilk normality test
##
## data: TP6C$uggbw
## W = 0.81622, p-value = 0.0004292
### transform data
TP6C$uggbw_log <- log10(TP6C$uggbw)
### test assumptions
levene.test(TP6C$uggbw_log, TP6C$Trtmt)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: TP6C$uggbw_log
## Test Statistic = 0.54474, p-value = 0.5876
shapiro.test(TP6C$uggbw_log)
##
## Shapiro-Wilk normality test
##
## data: TP6C$uggbw_log
## W = 0.96336, p-value = 0.4855
### analyze data
TP6Canovalog <- aov(uggbw_log ~ Trtmt, data=TP6C)
F7aStats <- summary(TP6Canovalog)
F7aStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Trtmt 2 0.1489 0.07443 0.716 0.5
## Residuals 22 2.2855 0.10389
# HP All Newts Setup ####
HPAllmaster <- filter(AL, Secretion=="Hydrophobic Peptide", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy")
# HP uggbw All Newts####
HPTempAll <- group_by(HPAllmaster, Temp)
HP6C <- filter(HPTempAll, Temp=="06°C", !is.na(uggbw))
HP6C <- group_by(HP6C, Trtmt)
## summarize####
HP6Csum <- summarize(HP6C, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n()))
F7bSum <- HP6Csum
F7bSum
## # A tibble: 3 x 5
## Trtmt count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 5*10^3 9 27.1 23.9 7.97
## 2 5*10^4 6 18.5 6.90 2.82
## 3 Control 9 89.2 76.7 25.6
## plot means####
Fig7b <- ggplot(HP6Csum, aes(Trtmt, avg, fill=Trtmt)) +
geom_col() +
theme(legend.position="none") +
scale_fill_manual(values=c("#B74641", "#730202", "#FB8383")) +
xlab("Exposure Treatment(zsp)") +
ylab("Recovered Peptides(µg/gbw)") +
theme_mitch +
geom_errorbar(aes(x=Trtmt, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) +
scale_x_discrete(limits=c("Control", "5*10^3", "5*10^4"), labels=c("Control", "5,000", "50,000"))+
scale_y_continuous(expand=c(0,0), limits=c(0,300))
Fig7b
## stats####
### test assumptions
levene.test(HP6C$uggbw, HP6C$Trtmt)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HP6C$uggbw
## Test Statistic = 2.9254, p-value = 0.07573
shapiro.test(HP6C$uggbw)
##
## Shapiro-Wilk normality test
##
## data: HP6C$uggbw
## W = 0.71124, p-value = 1.423e-05
### transform data
HP6C$uggbw_log <- log10(HP6C$uggbw)
### test for normailty
levene.test(HP6C$uggbw_log, HP6C$Trtmt)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HP6C$uggbw_log
## Test Statistic = 1.7094, p-value = 0.2052
shapiro.test(HP6C$uggbw_log)
##
## Shapiro-Wilk normality test
##
## data: HP6C$uggbw_log
## W = 0.98605, p-value = 0.9769
### analyze data
HP6Canovalog <- aov(uggbw_log ~ Trtmt, data=HP6C)
F7bStats <- summary(HP6Canovalog)
F7bStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Trtmt 2 1.785 0.8925 5.107 0.0156 *
## Residuals 21 3.670 0.1748
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
F7bPostHoc <- TukeyHSD(HP6Canovalog)
F7bPostHoc
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = uggbw_log ~ Trtmt, data = HP6C)
##
## $Trtmt
## diff lwr upr p adj
## 5*10^4-5*10^3 0.00530229 -0.550047045 0.5606516 0.9996808
## Control-5*10^3 0.56542215 0.068702609 1.0621417 0.0239107
## Control-5*10^4 0.56011986 0.004770529 1.1154692 0.0478216
# HP Control Only Setup ####
HPCtlmaster <- filter(AL, Trtmt=="Control", Secretion=="Hydrophobic Peptide", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy")
# HP uggbw Control only####
HPTemp <- group_by(HPCtlmaster, Temp)
HPTempuggbw <- filter(HPTemp, !is.na(uggbw))
## summarize####
HPTempuggbwsum <- summarise(HPTempuggbw, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n()))
FS1aSum <- HPTempuggbwsum
FS1aSum
## # A tibble: 3 x 5
## Temp count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 06°C 9 89.2 76.7 25.6
## 2 14°C 10 103. 88.6 28.0
## 3 22°C 7 67.9 69.3 26.2
## plot means####
FigS1a <- ggplot(HPTempuggbwsum, aes(Temp, avg, fill=Temp)) +
geom_col() +
scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) +
theme(legend.position="none") +
xlab("Temperature(°C)") +
ylab("Peptides Recovered(µg/gbw)") +
theme_mitch +
scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) +
geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) +
scale_y_continuous(expand=c(0,0), limits=c(0,240))
FigS1a
## stats####
### test assumptions
levene.test(HPTempuggbw$uggbw, HPTempuggbw$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HPTempuggbw$uggbw
## Test Statistic = 0.30887, p-value = 0.7373
shapiro.test(HPTempuggbw$uggbw)
##
## Shapiro-Wilk normality test
##
## data: HPTempuggbw$uggbw
## W = 0.84571, p-value = 0.001176
### transform data
HPTempuggbw$uggbw_log <- log10(HPTempuggbw$uggbw)
### test assumptions
levene.test(HPTempuggbw$uggbw_log, HPTempuggbw$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HPTempuggbw$uggbw_log
## Test Statistic = 0.018807, p-value = 0.9814
shapiro.test(HPTempuggbw$uggbw_log)
##
## Shapiro-Wilk normality test
##
## data: HPTempuggbw$uggbw_log
## W = 0.98428, p-value = 0.9493
### analyze data
HPTempuggbwanovalog <- aov(uggbw_log ~ Temp, data=HPTempuggbw)
FS1aStats <- summary(HPTempuggbwanovalog)
FS1aStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Temp 2 0.164 0.08221 0.483 0.623
## Residuals 23 3.913 0.17011
# HP % inhib @ 250ug/mL Control only####
HPTempinhib250 <- filter(HPTemp, !is.na(GIAPctInhib250))
## summarize####
HPTempinhibsum250 <- summarise(HPTempinhib250, count=n(), avg=mean(GIAPctInhib250), standarddev=sd(GIAPctInhib250), sem=sd(GIAPctInhib250)/sqrt(n()))
FS1bSum <- HPTempinhibsum250
FS1bSum
## # A tibble: 3 x 5
## Temp count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 06°C 5 39.4 15.6 6.99
## 2 14°C 10 51.3 28.8 9.10
## 3 22°C 2 68.6 22.8 16.2
## plot means####
FigS1b <- ggplot(HPTempinhibsum250, aes(Temp, avg, fill=Temp)) +
geom_col() +
scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) +
theme(legend.position="none") +
xlab("Temperature(°C)") +
ylab("Percent Inhibition") +
theme_mitch +
scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) +
geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) +
scale_y_continuous(expand=c(0,0), limits=c(0,100))
FigS1b
## stats####
### test for normality
levene.test(HPTempinhib250$GIAPctInhib250, HPTempinhib250$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HPTempinhib250$GIAPctInhib250
## Test Statistic = 0.54789, p-value = 0.5901
shapiro.test(HPTempinhib250$GIAPctInhib250)
##
## Shapiro-Wilk normality test
##
## data: HPTempinhib250$GIAPctInhib250
## W = 0.91736, p-value = 0.1332
### analyze
HPTempinhibanova250 <- aov(GIAPctInhib250 ~ Temp, data=HPTempinhib250)
FS1bStats <- summary(HPTempinhibanova250)
FS1bStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Temp 2 1265 632.6 0.99 0.396
## Residuals 14 8948 639.1
# HP Effectiveness Control only####
HPTempeffctrl <- filter(HPTemp, GIA250=="Y", !is.na(uggbw), !is.na(GIAPctInhib250))
HPTempeffctrl$Eff <- HPTempeffctrl$uggbw*HPTempeffctrl$GIAPctInhib250
## summarize####
HPTempeffsumctrl <- summarize(HPTempeffctrl, count=n(), avg=mean(Eff), standarddev=sd(Eff), sem=sd(Eff)/sqrt(n()))
FS1cSum <- HPTempeffsumctrl
FS1cSum
## # A tibble: 3 x 5
## Temp count avg standarddev sem
## <fct> <int> <dbl> <dbl> <dbl>
## 1 06°C 5 5081. 3262. 1459.
## 2 14°C 10 4166. 3315. 1048.
## 3 22°C 2 2880. 2187. 1547.
## plot means####
FigS1c <- ggplot(HPTempeffsumctrl, aes(Temp, avg, fill=Temp)) +
geom_col() +
scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) +
theme(legend.position="none") +
xlab("Temperature(°C)") +
ylab("Peptide Effectiveness") +
theme_mitch +
scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) +
geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) +
scale_y_continuous(expand=c(0,0), limits=c(0,12000))
FigS1c
## stats####
### test assumptions
levene.test(HPTempeffctrl$Eff, HPTempeffctrl$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HPTempeffctrl$Eff
## Test Statistic = 0.12212, p-value = 0.886
shapiro.test(HPTempeffctrl$Eff)
##
## Shapiro-Wilk normality test
##
## data: HPTempeffctrl$Eff
## W = 0.83988, p-value = 0.007546
### transform data
HPTempeffctrl$log_Eff <- log10(HPTempeffctrl$Eff + 1)
### test assumptions
levene.test(HPTempeffctrl$log_Eff, HPTempeffctrl$Temp)
##
## Modified robust Brown-Forsythe Levene-type test based on the absolute
## deviations from the median
##
## data: HPTempeffctrl$log_Eff
## Test Statistic = 0.42946, p-value = 0.6591
shapiro.test(HPTempeffctrl$log_Eff)
##
## Shapiro-Wilk normality test
##
## data: HPTempeffctrl$log_Eff
## W = 0.9243, p-value = 0.1746
### analyze data
HPTempeffctrlanova <- aov(log_Eff ~ Temp, data=HPTempeffctrl)
FS1cStats <- summary(HPTempeffctrlanova)
FS1cStats
## Df Sum Sq Mean Sq F value Pr(>F)
## Temp 2 0.1099 0.05496 0.552 0.588
## Residuals 14 1.3927 0.09948