--- title: "NSF EEID Adult Newt Skin Secretion Experiments" author: "Mitch Le Sage" date: "2020" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set( echo = TRUE, message = FALSE, warning = FALSE ) ``` ## Load Packages & Data Prep ```{r prep, echo=TRUE} library(ggplot2) library(gridExtra) library(bbmle) library(emdbook) library(dplyr) library(tidyr) library(tidyverse) library(tibble) library(knitr) library(rmarkdown) library(kableExtra) library(stringr) library(grid) library(ggpubr) library(dunn.test) library(lawstat) theme_mitch <- theme(panel.background=element_blank(), panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.border=element_blank(), axis.line=element_line(color="black", size=1), text = element_text(colour = "black", size = 18),axis.text.x = element_text(color = "black", margin=unit(c(0,0.2,0.2,0.2), "cm")), axis.text.y = element_text(color = "black", margin=unit(c(0.2,0,0.2,0.2), "cm")), plot.title = element_text(hjust =)) AL <- read.csv(file.choose()) # choose "NOVISSData.csv" file that is provided ``` ## Effects of Temperature on Total Skin Protein Fraction (Figure 6) ### Total Protein fraction recovery (Fig6a): µg of skin proteins recovered per gram body mass from adult NOVI at three temperatures #### Data Prep ```{r 6a setup} # TP Control Only Setup #### TPCtlmaster <- filter(AL, Trtmt =="Control", Secretion=="Total Protein", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy") # TP uggbw Control only#### TPTemp <- group_by(TPCtlmaster, Temp) TPTempuggbw <- filter(TPTemp, !is.na(uggbw)) ``` #### Data Summary ```{r 6a summary} ## summarize#### TPTempuggbwsum <- summarise(TPTempuggbw, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n())) F6aSum <- TPTempuggbwsum F6aSum ``` #### Figure 6a ```{r 6a plot} ## plot means#### Fig6a <- ggplot(TPTempuggbwsum, aes(Temp, avg, fill=Temp)) + geom_col() + scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) + theme(legend.position="none") + xlab("Temperature(°C)") + ylab("Protein Recovered(µg/gbw)") + theme_mitch + scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) + geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9))+ scale_y_continuous(expand=c(0,0), limits=c(0,240)) Fig6a ``` #### Testing Assumptions & Transforming Data ```{r 6a assuptiontest} ## stats#### ### test assumptions levene.test(TPTempuggbw$uggbw, TPTempuggbw$Temp) shapiro.test(TPTempuggbw$uggbw) ### transform data TPTempuggbw$uggbw_log <- log10(TPTempuggbw$uggbw) ### test assumptions levene.test(TPTempuggbw$uggbw_log, TPTempuggbw$Temp) shapiro.test(TPTempuggbw$uggbw_log) ``` #### ANOVA ```{r 6a analyze} ### analyze data TPTempuggbwanovalog <- aov(uggbw_log ~ Temp, data=TPTempuggbw) F6aStats <- summary(TPTempuggbwanovalog) F6aStats ``` #### PostHoc Test ```{r 6a posthoc} F6aPostHoc <- TukeyHSD(TPTempuggbwanovalog) F6aPostHoc ``` ### Total Protein percent inhibition (Fig6b): percent of B. sal. growth inhibition by adult NOVI skin proteins (500µg/mL) at three temperatures measured using Cell Titre Glo assay #### Data Prep ```{r 6b setup} # TP % inhib Control only#### TPTempinhib <- filter(TPTemp, CellGloConc=="500", !is.na(CellGloPctInhib)) ``` #### Data Summary ```{r 6b summary} ## summarize#### TPTempinhibsum <- summarise(TPTempinhib, count=n(), avg=mean(CellGloPctInhib), standarddev=sd(CellGloPctInhib), sem=sd(CellGloPctInhib)/sqrt(n())) F6bSum <- TPTempinhibsum F6bSum ``` #### Figure 6b ```{r 6b plot} ## plot means #### Fig6b <- ggplot(TPTempinhibsum, aes(Temp, avg, fill=Temp)) + geom_col() + scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) + theme(legend.position="none") + xlab("Temperature(°C)") + ylab("Percent Inhibition") + theme_mitch + scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) + geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9))+ scale_y_continuous(expand=c(0,0), limits=c(0,100)) Fig6b ``` #### Testing Assumptions & Transforming Data ```{r 6b assumptiontest} ## stats#### ### test assumptions levene.test(TPTempinhib$CellGloPctInhib, TPTempinhib$Temp) shapiro.test(TPTempinhib$CellGloPctInhib) ``` #### ANOVA ```{r 6b analyze} ### analyze data TPTempinhibanova <- aov(CellGloPctInhib ~ Temp, data=TPTempinhib) F6bStats <- summary(TPTempinhibanova) F6bStats ``` ### Total Protein Effectiveness (Fig6c): adult NOVI Total Protein effectiveness (µg produced * percent inhibition) at three temperatures #### Data Prep ```{r 6c setup} # TP Effectiveness Control only#### TPTempeffctl <- filter(TPTemp, CellGloConc=="500", !is.na(uggbw), !is.na(CellGloPctInhib)) TPTempeffctl$Eff <- TPTempeffctl$uggbw*TPTempeffctl$CellGloPctInhib ``` #### Data Summary ```{r 6c summary} ## summarize#### TPTempeffsumctl <- summarise(TPTempeffctl, count=n(), avg=mean(Eff), standarddev=sd(Eff), sem=sd(Eff)/sqrt(n())) F6cSum <- TPTempeffsumctl F6cSum ``` #### Figure 6c ```{r 6c plot} ### plot means#### Fig6c <- ggplot(TPTempeffsumctl, aes(Temp, avg, fill=Temp)) + geom_col() + scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) + theme(legend.position="none") + xlab("Temperature(°C)") + ylab("Protein Effectiveness") + theme_mitch + scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) + geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9))+ scale_y_continuous(expand=c(0,0), limits=c(0,12000)) Fig6c ``` #### Testing Assumptions & Transforming Data ```{r 6c assumptiontest} ## stats#### ### test assumptions levene.test(TPTempeffctl$Eff, TPTempeffctl$Temp) shapiro.test(TPTempeffctl$Eff) ### transform data TPTempeffctl$log_Eff <- log10(TPTempeffctl$Eff + 1) ### test assumptions levene.test(TPTempeffctl$log_Eff, TPTempeffctl$Temp) shapiro.test(TPTempeffctl$log_Eff) ``` #### Kruskal-Wallis Test ```{r 6c analyze} ### analyze data F6cStats <- kruskal.test(Eff ~ Temp, data=TPTempeffctl) F6cStats ``` ## Effects of B.sal. exposure on Total Skin Protein and Hydrophobic Peptide production (Figure 7) ### Total Protein fraction recovery (Fig7a): µg of skin proteins recovered per gram body mass from adult NOVI exposed to different doses of B. sal. (all adult NOVI were kept at 16°C) #### Data Prep ```{r 7a setup} # TP 6C Only uggbw#### TPAllmaster <- filter(AL, Secretion=="Total Protein", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy") # TP uggbw All Newts#### TPTempAll <- group_by(TPAllmaster, Temp) TP6C <- filter(TPTempAll, Temp=="06°C", !is.na(uggbw)) TP6C <- group_by(TP6C, Trtmt) ``` #### Data Summary ```{r 7a summary} ## summarize#### TP6Csum <- summarize(TP6C, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n())) F7aSum <- TP6Csum F7aSum ``` #### Figure 7a ```{r 7a plot} ## plot means#### Fig7a <- ggplot(TP6Csum, aes(Trtmt, avg, fill=Trtmt)) + geom_col() + theme(legend.position="none") + scale_fill_manual(values=c("#B74641", "#730202", "#FB8383")) + xlab("Exposure Treatment(zsp)") + ylab("Recovered Proteins(µg/gbw)") + theme_mitch + geom_errorbar(aes(x=Trtmt, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) + scale_x_discrete(limits=c("Control", "5*10^3", "5*10^4"), labels=c("Control", "5,000", "50,000")) + scale_y_continuous(expand=c(0,0), limits=c(0,300)) Fig7a ``` #### Testing Assumptions & Transforming Data ```{r 7a assumptiontest} ## stats#### ### test assumptions levene.test(TP6C$uggbw, TP6C$Trtmt) shapiro.test(TP6C$uggbw) ### transform data TP6C$uggbw_log <- log10(TP6C$uggbw) ### test assumptions levene.test(TP6C$uggbw_log, TP6C$Trtmt) shapiro.test(TP6C$uggbw_log) ``` #### ANOVA ```{r 7a analyze} ### analyze data TP6Canovalog <- aov(uggbw_log ~ Trtmt, data=TP6C) F7aStats <- summary(TP6Canovalog) F7aStats ``` ### Hydrophobic Peptide fraction recovery (Fig7b): µg of hydrophobic peptides recovered per gram body mass from adult NOVI exposed to different doses of B. sal. (all adult NOVI were kept at 16°C) #### Data Prep ```{r 7b setup} # HP All Newts Setup #### HPAllmaster <- filter(AL, Secretion=="Hydrophobic Peptide", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy") # HP uggbw All Newts#### HPTempAll <- group_by(HPAllmaster, Temp) HP6C <- filter(HPTempAll, Temp=="06°C", !is.na(uggbw)) HP6C <- group_by(HP6C, Trtmt) ``` #### Data Summary ```{r 7b summary} ## summarize#### HP6Csum <- summarize(HP6C, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n())) F7bSum <- HP6Csum F7bSum ``` #### Figure 7b ```{r 7b plot} ## plot means#### Fig7b <- ggplot(HP6Csum, aes(Trtmt, avg, fill=Trtmt)) + geom_col() + theme(legend.position="none") + scale_fill_manual(values=c("#B74641", "#730202", "#FB8383")) + xlab("Exposure Treatment(zsp)") + ylab("Recovered Peptides(µg/gbw)") + theme_mitch + geom_errorbar(aes(x=Trtmt, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) + scale_x_discrete(limits=c("Control", "5*10^3", "5*10^4"), labels=c("Control", "5,000", "50,000"))+ scale_y_continuous(expand=c(0,0), limits=c(0,300)) Fig7b ``` #### Testing Assumptions & Transforming Data ```{r 7b assumptiontest} ## stats#### ### test assumptions levene.test(HP6C$uggbw, HP6C$Trtmt) shapiro.test(HP6C$uggbw) ### transform data HP6C$uggbw_log <- log10(HP6C$uggbw) ### test for normailty levene.test(HP6C$uggbw_log, HP6C$Trtmt) shapiro.test(HP6C$uggbw_log) ``` #### ANOVA ```{r 7b analyze} ### analyze data HP6Canovalog <- aov(uggbw_log ~ Trtmt, data=HP6C) F7bStats <- summary(HP6Canovalog) F7bStats ``` #### PostHoc Test ```{r 7b posthoc} F7bPostHoc <- TukeyHSD(HP6Canovalog) F7bPostHoc ``` ## Effects of Temperature on Hydrophobic Peptide Fraction (Figure S1) ### Hydrophobic Peptide fraction recovery (FigS1a): µg of hydrophobic peptides recovered per gram body mass from adult NOVI at three temperatures #### Data Prep ```{r S1a setup} # HP Control Only Setup #### HPCtlmaster <- filter(AL, Trtmt=="Control", Secretion=="Hydrophobic Peptide", InduceType!="Massage", InduceConc=="25.0nmol/g", DPI=="000 dy") # HP uggbw Control only#### HPTemp <- group_by(HPCtlmaster, Temp) HPTempuggbw <- filter(HPTemp, !is.na(uggbw)) ``` #### Data Summary ```{r S1a summary} ## summarize#### HPTempuggbwsum <- summarise(HPTempuggbw, count=n(), avg=mean(uggbw), standarddev=sd(uggbw), sem=sd(uggbw)/sqrt(n())) FS1aSum <- HPTempuggbwsum FS1aSum ``` #### Figure S1a ```{r S1a plot} ## plot means#### FigS1a <- ggplot(HPTempuggbwsum, aes(Temp, avg, fill=Temp)) + geom_col() + scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) + theme(legend.position="none") + xlab("Temperature(°C)") + ylab("Peptides Recovered(µg/gbw)") + theme_mitch + scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) + geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) + scale_y_continuous(expand=c(0,0), limits=c(0,240)) FigS1a ``` #### Testing Assumptions & Transforming Data ```{r S1a assumptiontest} ## stats#### ### test assumptions levene.test(HPTempuggbw$uggbw, HPTempuggbw$Temp) shapiro.test(HPTempuggbw$uggbw) ### transform data HPTempuggbw$uggbw_log <- log10(HPTempuggbw$uggbw) ### test assumptions levene.test(HPTempuggbw$uggbw_log, HPTempuggbw$Temp) shapiro.test(HPTempuggbw$uggbw_log) ``` #### ANOVA ```{r S1a analyze} ### analyze data HPTempuggbwanovalog <- aov(uggbw_log ~ Temp, data=HPTempuggbw) FS1aStats <- summary(HPTempuggbwanovalog) FS1aStats ``` ### Hydrophobic Peptide percent inhibition (FigS1b): percent of B. sal. growth inhibition by adult NOVI hydrophobic peptides (250µg/mL) at three temperatures measured using a 7-day Growth Inhibition assay #### Data Prep ```{r S1b setup} # HP % inhib @ 250ug/mL Control only#### HPTempinhib250 <- filter(HPTemp, !is.na(GIAPctInhib250)) ``` #### Data Summary ```{r S1b summary} ## summarize#### HPTempinhibsum250 <- summarise(HPTempinhib250, count=n(), avg=mean(GIAPctInhib250), standarddev=sd(GIAPctInhib250), sem=sd(GIAPctInhib250)/sqrt(n())) FS1bSum <- HPTempinhibsum250 FS1bSum ``` #### Figure S1b ```{r S1b plot} ## plot means#### FigS1b <- ggplot(HPTempinhibsum250, aes(Temp, avg, fill=Temp)) + geom_col() + scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) + theme(legend.position="none") + xlab("Temperature(°C)") + ylab("Percent Inhibition") + theme_mitch + scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) + geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) + scale_y_continuous(expand=c(0,0), limits=c(0,100)) FigS1b ``` #### Testing Assumptions & Transforming Data ```{r S1b assumptiontest} ## stats#### ### test for normality levene.test(HPTempinhib250$GIAPctInhib250, HPTempinhib250$Temp) shapiro.test(HPTempinhib250$GIAPctInhib250) ``` #### ANOVA ```{r S1b analyze} ### analyze HPTempinhibanova250 <- aov(GIAPctInhib250 ~ Temp, data=HPTempinhib250) FS1bStats <- summary(HPTempinhibanova250) FS1bStats ``` ### Hydrophobic Peptide Effectiveness (FigS1c): adult NOVI Hydrophobic Peptide effectiveness (µg produced * percent inhibition) at three temperatures #### Data Prep ```{r S1c setup} # HP Effectiveness Control only#### HPTempeffctrl <- filter(HPTemp, GIA250=="Y", !is.na(uggbw), !is.na(GIAPctInhib250)) HPTempeffctrl$Eff <- HPTempeffctrl$uggbw*HPTempeffctrl$GIAPctInhib250 ``` #### Data Summary ```{r S1c summary} ## summarize#### HPTempeffsumctrl <- summarize(HPTempeffctrl, count=n(), avg=mean(Eff), standarddev=sd(Eff), sem=sd(Eff)/sqrt(n())) FS1cSum <- HPTempeffsumctrl FS1cSum ``` #### Figure S1c ```{r S1c plot} ## plot means#### FigS1c <- ggplot(HPTempeffsumctrl, aes(Temp, avg, fill=Temp)) + geom_col() + scale_fill_manual(values=c("cornflowerblue", "goldenrod2", "firebrick")) + theme(legend.position="none") + xlab("Temperature(°C)") + ylab("Peptide Effectiveness") + theme_mitch + scale_x_discrete(limits=c("06°C", "14°C", "22°C"), labels=c("6", "14", "22")) + geom_errorbar(aes(x=Temp, ymin=avg-sem, ymax=avg+sem), width = 0.2, position=position_dodge(width=0.9)) + scale_y_continuous(expand=c(0,0), limits=c(0,12000)) FigS1c ``` #### Testing Assumptions & Transforming Data ```{r S1c assumptiontest} ## stats#### ### test assumptions levene.test(HPTempeffctrl$Eff, HPTempeffctrl$Temp) shapiro.test(HPTempeffctrl$Eff) ### transform data HPTempeffctrl$log_Eff <- log10(HPTempeffctrl$Eff + 1) ### test assumptions levene.test(HPTempeffctrl$log_Eff, HPTempeffctrl$Temp) shapiro.test(HPTempeffctrl$log_Eff) ``` #### ANOVA ```{r S1c analyze} ### analyze data HPTempeffctrlanova <- aov(log_Eff ~ Temp, data=HPTempeffctrl) FS1cStats <- summary(HPTempeffctrlanova) FS1cStats ```